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Stability of plane resonance rotations of a satellite in an elliptic orbit are in- 

vestigated using the method of Poincarg. It is shown that resonances of the 

type k : 2 (k is an integer) are determined by the first approximation with 

respect to the small parameter, while resonances of type k : 4 and of types k 
: 3 and k : 6 are determined, respectively, by the second and third approxi- 

mations. The effect of tidal moments on the existence and stability of plane 

resonance rotations is investigated. 

1. Let us consider the equation of plane oscillations of a satellite in an elliptic 

orbit [l] 

(1 +ecosv)~ -22esinvz f ” 
dV 

Tsin28= 2esinv 
(1.1) 

where 6 is the angle between the radius vector of the satellite center of mass and its 
principal axis of inertia which lies in the orbit plane and corresponds to the moment 

of inertia c, V is the true anomaly, e is the orbit eccentricity, n* = 3 (A - 

C) 1 B, and A, B, and C are the principal central moments of inertia of the 

satellite. We assume that d > 0. 
We attribute to motions of class k : LQ satellite rotations of the form [2] 

O=v(k- 4 / m + cp (v) (1.2) 
where k is an integer, m is a natural number and k and m are relatively prime num- 
bers; cp (v) is a periodic function of period &cm. In the course of ms turns a- 

round the planet the satellite in motion ( 1.2) makes ks turns about an axis perpendi- 

cular to the plane of orbit. 
Equation (1.1) was the subject of detailed investigation (see, e. g., [2 -101 3. 

Resonates of the type k : 2 were revealed in [3 -51 by asymptotic methods. Reson- 
ances 5 : 4 and 7 : 4were numerically determined in [2], and periodic solutions of 
Eq. (1.1) were investigated in [S -81. We shall use Poincari’s method of the small 
parameter [ll, 121 for determining resonance motions of the satellite. 

We substitute variables 

z1 = 28 - 2v (k - m) / m, G = x1’ (1.3) 

-7 I__. I_ 

*) Sarychev, V. A. and Zlatoustov, v. A., Periodic oscillations of a satellite in the 
elliptical orbit plane. Preprint Inst. Prikladnoi Matematiki Akad. Nauk, 388R, No. 
48, Moscow, 1975. 
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and introduce the small parameter p = - na, assuming that (A - C) / B < 1. 
The substitution (1.3) transforms Eq. (1.1) into a quasi-linear system with period- 

ic coefficients of period 2n of the form 

dx, - = 52, dxz _ 
dv 

(1 + e cos Y) dv - 2esinvjx2+2+$) + (1.4) 

p sin if v + xi) 

where p is an integer, q is a natural number, p and Q are relatively prime numb- 
ers, and ,p / q = 2(k - m) / m. 

The satellite resonance motions are determined by the periodic solution of system 
( 1.4) of period 2lr.q , which for p, = 0 will be called the generating system. It 
has a periodic (generating) solution xi”, xsc,” of 2n -period which depends on the 
arbitrary parameter cc e IO, 2n) of the form 

(1.5) 

where a (Y) = wat is the dimensionless time and w,, is the mean motion of the 

satellite. 

Let us fix the arbitrary value of parameter a. The periodic (of 2nq -period) 
solution of system (1.4) with initial conditions 

xi = 5; (0, a) + pi = a + Bl, % = z; (0) + Ba 

will be sought in the form 

2l =51 (II> Big @a, a, y), 2 = 172 (1.6) 

where fil (p, a) and pa (CL, a) are functions of parameter l.r’ that vanish when 

/A = 0. In accordance with Poincargs theorem we represent solution (1.6) in the 
form of series 

El = XL0 + jO lLki ;a d%31iS2i9 k2 + i2 + j2 # 0; 1 = 1, 2 (1.7) 

where the coefficients a(& are determined from the solution of the problem 

d& 
-= 

dv 

2e sin v 
1 + e co9 v ai:) + fkij 

(1.8) 

a;$) (0) = 1) ug (0) = 1 

a~‘j(O)=O,(k,i,j)#(O,1,0); a~~(O)=O,(k,i,j)~(O,O,~) 

where fkij are polynomials are determined by preceding approximations With rc+ 

pect to p . System (1.8) is integrated in quadratures. In the zero approximation 

with respect to y$ ;;, J& = (1 + e)" (1 _ ,2)-S/* ̂E (v) 

(1.9) 

ag\ = [(I + e) I(1 + e cos v)l" 

a.$:! = 0, (i, m) # (0, I), (IsO) 

a& = 0 1 (i, 4 # (0, 1) 
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The condition of periodicity of solution (1.6) is of the form 

$2 (& B1, IL, a) = M = 0, 1 = I,2 

[4 = qv=zrtq - 3 Itk?D 

Taking into consideration (1.9) we obtain 
00 

we determine & and pa using system (1.10) under condition that fir (0, a) = 0 
and fJ2 (0, a) = 0. It follows from (1.10) that the Jacobian {a (&, 92) / 8 (PI, 

62))lell = 0 and 

(a$, 1 dp&Ll = rc& I > 0 (1.11) 

Taking into account (1.11) we solve the first equation of system (1.10) for pa , We 
have 

Ba = f32 (lb PI? 49 I32 (0, 0, 4 = 0 (1.12) 

From (1.12) and the second equation of system (1.10) for the determination of PI we 
obtain an equation of the form [12] 

$2 (cl9 PI7 B2(P* Bl, 49 a) = $ (P, (cc) + (dP,l da) p1 4 (1*13) 

0 (l-b B12)) = 0 

where s is some positive integer. 

The solution of Eq. (1.13) for p, exists when condition 

P, (a) = 0 
(1.14) 

- . . 
is satisfied. 

To each parameter CL = a* determined by (1.14) corresponds solution fir (a*, 
p), that is unique and analytic with respect to p , when a* is a simple solution of 

Eq. (1.14), i.e. 

(1.15) 
Substituting the obtained values of PI and p2 into (1.7) we obtain for each 

parameter a = a* a unique periodic (of 2nq -period) solution of system (1.4), 
which for ~1 = 0 becomes the generating solution. 

2. Let us investigate the stability of the obtained solution 21 (v, a*), x2 (Y, 

a*) * and consider for (1.4) a system of equations in variations whose characteristic 
equation in the Poincark form is [11] 

det II Xij IIer= B~(~.cG*) = 0, I = 1, 2; i, j = I,2 (2.1) 

Xii = 1 - p + &i f a$i; Xfj = aqt I aPj (i # i) 

which for p = 0 has the root p = 1 of multiplicity two, to which corresponds a 
second order elementary divisor. According to [13] the roots of Eq. (2.1) are to be 
sought in this case in the form of series in powers of 1 p I ‘12. We shall seek a solu- 
tion of the characteristic equation of the form 

p = 1 + I p I’!” Pl + I CL I”2 K (p) (2.2) 



436 V. V. BeletskIi and D. Iu. pogorelov 

where K (0) = 0 and I” is some positive integer. Assuming that p1 # 0 and 
taking into account (2. ‘2.1, we write Eq. (2.1) in the form 

I PI’ (Pl + K w2 - 1 P I’.” I, (~1 + K (j.4) + J, = 0 
(2.31 

For stability of the periodic solution it is necessary in this case that 1 p 1 = 1, 
i. e. p1 is pure imaginary. We shall show that in the case of stable motions the 
quantity I, is of an order not higher than r with respect to p . Let 

Y (p), where w (0) # 0, a < r . 
I, = 1 r_~ 1” 

It then follows from (2.3) that either p1 = 
0 or there exists root p1 with a nonzero real part, which contradicts the selection 

of p1 and the condition of stability, Hence a > r-. Let us show that 

(2.4) 

On the other hand 

Braces in the last two equalities mean that after partial differentiation, (1.12) is 
substituted for fis . Formula (2.4) follows from the last three equalities. Note that 

(2.3) and (2.4) imply that T = S. Equating the coefficients at 1 p r in Eq. (2.3) 

and taking into account (1. ll), we obtain the necessary stability condition of the form 

(-I)$ (dP, / du)W+* < 0 (2.5) 
which is analogous to the sufficient condition of stability obtained in [14] for the case 
when s = 1 , and Eq. (2.1) with p = 0 has 1 pf’f 1 ( ‘i as one root and 

--p(s)= 1 as the other. 

3. Let us pass now to finding the condition8 of existence and stability of periodic 
solution8 of system (1.4) in explicit form and also to the derivation of these solutions. 
Taking into consideration the results in [12] we seek a periodic solution of system(l. 4) 
in the form of formal series 

s-X+“(lt,o) + i Xi0 (Y, a) p”; i = 1,2 (3.1) 
a=1 

where Xi0 (Y,, U) is the generating solution (1.5). If the equation8 

[X2J = 0, m = I, 2,. . *, s - 1 (3.2) 

are identically satisfied with respect to a and equation 

[XJ = P, (a) = 0 

determines the simple solution a = cz * , then system (1.4) has a unique periodic solu- 

tion which in the neighborhood of p+ = 0. is analytic with respect to p, . 
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From (3.1) and (1.4) we obtain for the determination Xi0 equations of the type 
(1.8). Integration of these equations yields the following recurrent relationships: 

1 
xuJ = (1 _ e2)‘/r ( tcb”’ + z Y, dv i -j,,&) +cb” 

0 0 

(3.3) 

Y 

1 
x20 = (i + e co.9 Y)% (pdv + d?) 

0 

Y. = F@) (1 + e cos v)2, F(l) = {F) 

X&li, - * .Xlifi 

i,+i,+.. .+ir=a-1 

F = sin (v p / q + x1) / (1 + e cos v) 

where cJz) are constants of integration. The functions in braces are determined by 

the generating solution (1.5). For the determination of a* and constants of integra- 

tion cJz) we use the conditions of periodicity of solution [xr,] = 0, 1 = 1, 2; 
CJ = 1,2,. . . . 

R e m a r k 1. System (1.4) is invariant with respect to the substitution 

v+v-22nq, x,+x,+2nk/q, x2+x2 (3.4) 

where k is an integer. This means that if x1 (v), x2 (v) is a solution of system 
(1.4), then x1 (v - 2nk) + 2nk / q, x2 (v - 2nk) is also its solution. When 

k is a multiple of q these two solutions are identical, otherwise there are, generally, 

none. 
R e m a r k 2. We introduce the notation Popq = [x2,,]. It follows from( 3,4) 

that 
o+r 

P,“” (9 = kzl A {z siPk+l a cOsk-1 a, CJ = 1,2, . . . 

where AkoPq are some constants dependent on the orbit eccentricity. 
It was shown by numerical methods for q = 1, 2, 3 and m < 4 that equality 

(3.2) is identical with respect to a , and for m = q it assumes the form 

Pgpq (a) = AqP sin qa = 0 (3.5) 

The dependence of A2” / (47~) and A Qp / (12 n”) on the eccentricity is shownin 
Fig. 1 by solid and dash lines, respectively. The solid lines I, 2, 3. correspond to 
p = 1, 5, 9; while the dash lines 1-5 relate to p = 1, 2, 4, -2, -1. 
Function A lP (e) was obtained in [4]. For small e we nave 

Alp N elpl, A,” _ e?dPI-1) A,-2 _ A Q2 N e2, A,-l N A,’ N e, (3.6) 
7 

Aa M e3 

Note that q = 1 corresponds to resonances of the type k : 2, q = 2 to type 
k : 4, and q = 3 to types k : 3 and k : 6 (k is an integer relatively prime 

to q). For zero eccentricity dqP # 0 only when p = 0 and q = 1 (reson- 
ance 1 : 1 of the Moon type ); for remaining p and q the conditions of existence 
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of periodic solutions is identically satisfied, since AaP = 0. When e = 0 sys- 
tem (1.4) is analytically integrable [9]; analysis of its solution leads to the conclusion 

that motions of the type (1.2) on a circular orbit exist for any p and 4; all of them, 
except the resonance 1 : 1, are unstable. 

We shall consider only such orbits for which AqP # 0. Equation (3.5) has the 
solution 

cc* =O,nlq,...,(Zq-1)nlq; q = 1, 2, 3 

which satisfies condition (1.15). 
To every a* corresponds a unique 2nq -periodic solution of system (I.. 4) 

which for p = 0 becomes the generating solution. According to Remark 1 it is 
sufficient to determine solution that correspond to CC* = 0 and u* = n i q, 
since the remaining solutions are derived from these using the substitution (3.4). Thus 

solutions are divided in two classes that correspond to the Indicated values of CL*. 
The necessary condition of stability assumes the form 

(-l)q q co9 qa* A,p < 0, q = 1, 2, 3 (3.7) 

It follows from (3.7) that when (--1)‘A, < 0 the sohtions of class a* = ?I 
/ q are unstable, and that condition (3.7) is satisfied for class a* = 0 solutions. 

When ( -l)qA,p > 0 solutions of class a* = 0 are unstable and for class CC* 
= n / q (3.7) is satisfied. 

Numerical calculations show that at least for the considered p and condition e < 
0.6, (-l)qA,p < 0, and p > 0, q = 1, 2, 3, when only solutions of class 

a* =o can be stable. 

For negative p and increasing 1 p 1 the sign of ( -l)qA,p alternates beginn- 
ing from the positive. For example, for q = 3 the quantity - AQP iS positive for 
p = -1, -4, -7 and negative for p = -2, -5, -43. In the first caSe only 

solutions of class a* = 31 / q can be stable, in the second only those of class 
a* =o. 

Initial values of the periodic solution zi (0, a*), xi (0, a*) are calculated with 
any required accuracy for fairly small p ) using formulas 

Xl (0) =: a* + i cy p z + 0 (pN+l) 
I=1 

XT* (0) = ($- -+- 2) [ $-;;); - I] + ~cw + 0 (PNil) 
I=1 

where c&if are uniquely determined by the periodicity conditions [ll]. Thus 

23-I 

(2) _ 1 
Cl -2ng. c sF”’ (1 + e cos v) dv, 1 = 1,2,3,. . . 

0 

Phase patterns of periodic solutions of system ( 1.4) are shown in Figs. 2 -5 for 
a* = 0. Fig.2 corresponds to p = -0.1 and e = 0.2; resonances 5 : 4, 

7 : &and 9 : 4 correspond to q = 2, p = 1, 3. 5 and initial conditions 

xs (0) = -0.852, --1.138,-1.4~. The phase pattern for resonance 11 : 4, 

appears in Fig.3 with q = 2, p = 7, e = 0,02, and p = -0.1; for zs (0) 
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Fig. 2 

Fig. 4 

Fig. 3 

Fii. 5 
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we have in this case x2 (0) = -0.186. 
q = 3, p = 1; e = 0.02, 

Fig.4 corresponds to resonance 7 : 6, 
&b = -0.01, and xa (0) = -0.0637. Resonance 

oftype 4:3 iSshowninFig.5for q = 3, p = 2, p = -0.01, e =O.OZ, 
and xS (0) = -0.0926. 

Initial values of zS (0) for a* = 0 for certain resonances are also tabulated 
below, All derived periodic solutions with a* == 0 have zr (0) = 0 as initial 
value, 

Q 

j 

e 

0.02 

0.2 

- 

I t* 

-0.1 

-0.01 

-0.01 

P 

3 
5 

3 
5 

-1 
1 

4” 

R:m 

7:4 
9:4 

714 
9:4 

-0.961 
-0.134 

-0.13 
-0.173 

5:6 -0.601 
7~6 -0.8 
4:3 -0.93 
5:3 -1.029 

Phase patterns for a* = 2nk / q ace obtained in conformity with Remark 1 from 
the phase pattern for CX* = 0 by the 2nk /q shift along the z1 -axis. 

Let US explain the physical meaning of conditions of stability and existence of 

periodic SOlUtiOnS (1.14), (1. X5), and (2.5) for q = 1. Then P, (a) and the pert- 
urbing force function ace of the form 

9% 

u = - cB-+ cos (pv + x1), c = con& c > 0 

We average U with respect to time using instead of a+ the generating solution; 

the mean value of u as a function of parameter a is of the form 

2x 

U (a) = - c’ s cos~pz$2(2- ~)+aJ(1+ecos$dv 
0 

c’ = const > 0 

Comparing P, with U , taking into account the stability condition (2.5), we 

conclude that the periodic (of period 2 a’r ) solutions of System (1.4) which become 

generating solutions when ~1 = 0 can only correspond to those values of parameter 

a== a* for which the time averaged perturbing force function in the generating 

solution attains an extcemal value. solutions can be stable only when the extremum 

is a maximum. 
The obtained extcemum principle is in partial agreement with the hypothesis form- 

ulated in {2] according to which the force function averaged along the exact solution 
of system (1.4) has in conformity with initial data a maximum for stable reSonance 

motions of the form (1.2). 
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4. Let now the satellite be subjected besides gravitational effects to the moment 
of tidal forces [Xl] 

M= --63/l.* 

where k is a positive constant, r is the distance from the satellite to the planet, and 

0 is the angular velocity of satellite rotation relative to the orbital coordinate sys- 
tem. Let us assume that the moment of tidal forces is of order n relative to u . 
The presence of such moment results in the appearance in the right-hand side of the 

second equation of system (1.4) of the additional term 

- I p I” kl (1 i- e cos v 1%’ + p I 9) (4.1) 

where kl is a positive constant, and zl’ and zs’ are variables of the problem 
with a tidal moment. 

We seek in this case a periodic solution using the procedure applied to system( 1.4). 
Since system (1.4) with allowance for (4.1) coincides with an accuracy within u”-’ 

with system (1.4), all results obtained with allowance for (4, I) coincide with an acc- 

uracy smaller than pn with respective formulas for (1.4). For $s we have 

9s (P, @I’, @a’ (F, PI’, a’), a’) = 9‘2 (P, B1’1 B‘A’ (P, 8’1 a’)* a’) + (4.2) 

p*(b + 0 (IL, 01’)) 

b = (-i)“+1 (y;$ {($+2)(1-e2)‘/‘(1t_3es+~~)- 

where the prime indicates the presence of the tidal moment. 
Let n < S. Then Eq. (4.2) is solvable for &’ (8 (0, a’) = 0) only under con- 

dition that 6 = 0 , an equality that is generally not satisfied (except for a finite 

number of eccentricities). 
When n = s the condition of existence is of the form 

P, (a’) + b = 0 

or, if q=1,2,3 
A$ sin qua’ + b = 0 

which is solvable for a’ under condition that 

lb/ABl<1 (4.3) 
It was shown above that s = p for q = 1,2,3 and s >, 4 when q >, 4. Hence, 

when the moment of tidal forces is fairly large (sufficient if n < s), the condition of 
existence of solution of Eq. (4.2) is not satisfied, i. e. a periodic solution of system 

(1.4) with allowance for (4.1) which for p = 0 becomes the generating solution, 
does not exist. For considerable q much weaker tidal forces are required for”blurr- 
ing’ the resonance motion than in the case of q = S. 

Note that al~ough P is assumed small for each specific satellite, it is nonthe- 
less finite. Consider the case of q = 1,2,3. Let the magnitude of the tidal moment 
be of order higher than q with respect to P . In that case we assume that M = 

--i~I~k20/r8, i.e. k, is an infinitely small quantity. Let us consider inequal- 
ity (4.3). It folIows from (3.6) that for small eccentricities the quantity 1 df: 1, q = 

~2~3, rapidly decreases as 1 p 1 increases. The quantity b varies relatively little 
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as 1 P 1 increases, hence condition (4.3) of existence of a periodic solution that becom- 
es the generating one when p = 0 is satisfied for small 1 p 1 and not satisfied for fair- 
ly large 1 p I. Thus for Q = 1, 2, 3 even small tidnl moments blurr almost all reson- 
ances, except a finite number of resonances with p small in absolute value . 

For natural celestial bodies parameter p 40-3 -t 10-3. If one assumes that tidal 
forces are i06 times lower than gravitational perturbations, then even for such celes- 

tial bodies only resonances with 4 = 1 , and possibly Q = 2 , are possible when1 p 1 
is fairly small and the orbit is slightly elliptic. 

Blurring of high-order resonances with the addition of dissipative forces follows in 
the general case from the theorem on the necessary conditions of synchronism in a 
dynamic system [lS]. 

Let us consider the case of n > s and P not very large in absolute value in the 
sence that the resonance is not blurred by tides. The conditions of existence of period- 
ic solution of system (1.4) with allowance for (4.1) that becomes the generating solut- 

ion when p = o is, then, identical to the similar conditions (1.14) and (1.15) that 

relate to the case of absence of tides. Hence a’* is equal a* . Omitting the 
proof, we formulate under these conditions the following statement for resonance mot- 

ions of the type k : 2 (4 = 1). If the roots pci) , i = 1, 2 of the characteristic equation 
(2.1) (in the absence of tides) differ in absolute value from unity by a quantity of ord- 

er o (u”) and the moment of tidal forces Is of order un , a resonance motion with 
the addition of the tidal moment becomes asymptotically stable. In particular, if 
the motion is stable without tides, it becomes asymptotically stable when the tidal 

moment is added. 
It can be shown that lP@l, i = I,2 differ from unity at least by a quantity of 

order o (us) and, consequently, if the tidal moment is of order PL2 , all resonanc- 

esofthetype k:2, for which the conditions of existence are satisfied, are asympt- 

otically stable. 
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